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(a) Let {z,}, {yn} be sequences of complex numbers and let s,, := > 7', yx, So := 0.
Prove the summation by parts formula:
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for m > n.

(b) Use summation by parts formula to prove the Kronecker’s Lemma: Let
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Let 0 < by <by <---<b, = 00. Then
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Note in particular, we have
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(c) Use summation by parts formula to study the convergence of the series:
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Hint: Write cos(mn) = Re(e™).

(d) Use summation by parts formula to compute:
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2. These are for reference only.

Theorem 1. Suppose {a,} are complex numbers so that the power series

G(z) == i apx"
n=0

has radius of convergence 1.

(a) (Abel’s Theorem) Suppose
Z a, = s € C.
n=0

Then lim, 1+ G(z) = s.

(b) (Littlewood’s theorem) Conversely, suppose lim, 1+ G(z) = s € C, and that
there is C' > 0 such that for anyn € N,

|na,| < C

Then
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